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It is shown that the usual analysis for the implicit artificial viscosity of finite difference 
analogs of the linear advection equation is ambiguous, with different results obtained 
for transient and steady-state problems. The ambiguity is easily resolved for the inviscid 
equation, but for the advection-diffusion equation, the steady-state analysis is shown to 
be applicable to steady-state problems. It is demonstrated that the currently most 
popular methods, touted as having no artificial viscosity, actually do have such when 
applied to steady-state problems. 

INTRODUCTION 

“Artificial viscosity” is a particular kind of truncation error exhibited by some 
finite difference analogs of advection equations. The first use of the term was by 
von Neumann and Richtmyer [ 11, who explicitly added a viscosity-like term to the 
inviscid gas dynamic equations in order to allow the calculation of shock waves 
by what is now known as the “shock-smearing” or “through” method. Their 
explicit artticial viscosity term was deliberately made proportional to 4x2, so as 
to assure mathematical consistency; that is, their expZicit artificial viscosity term 
was indeed a second-order truncation error. 

It has since been recognized that the same kind of artificially viscous behavior 
can be obtained, often inadvertently, just due to the truncation error of the FDE 
(hnite difference equation). Noh and Protter [2] first presented an analysis of the 
implicit artificial viscosity of the upwind differencing method applied to the linear 
model advection equation 

56 = -& * (1) 

For u > 0, the upwind differencing method for (1) gives the following FDE: 

(Si”” - 5,“)/At = -u[(<i” - ~~~‘-3/kY]. (2) 
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The truncation error is O(dt, dx). Rewriting (2) in terms of the Courant number 
c = uLlt/dx gives, for u = constant, 

For c = 1, the method gives 5:” = [F-, , which is th e exact solution. The condition 
c = 1 is also the stability limit. For c < 1, the method introduces an artificial 
damping, in that the von Neumann stability analysis shows that the amplification 
matrix has eigenvalues / X / < 1. Any method which has 1 h / < 1 introduces such 
an artificial “damping,” but a Taylor series expansion, as in the application of 
Hirt’s stability analysis [3], shows that Eq. (3) is equivalent to 

it = -z& + (z&/2) [,, - got&, + O(Llx2, LIP). (4) 

The & term in (4) is customarily evaluated from (1) for constant u as 

Using (5) in (4) gives 

where 

a, = @X/2) - (zPLlt/2) = @x(1 - c). (7) 

Since the method has introduced a nonphysical coefficient 01, of a2[/ax2, we are 
justified in referring not only to the artificial damping, but more specifically, to 
artificial or numerical diffusion or numerical viscosity of the method. (Hirt [3] 
successfully uses cy, > 0 as a necessary stability criterion.) For c = 1, (7) indicates 
~1, = 0, a result consistent with the fact that the exact solution is obtained for c = 1. 

TRANSIENT vs STEADY-STATE ANALYSES 

The above analysis has been used by many authors to describe the artificial 
viscosity of various methods, and the results are widely accepted as being applicable 
to multidimensional problems, with and without physical viscous terms. But the 
interpretation of ~11, in multidimensional, viscous and/or steady-state problems is 
not as straightforward as it might appear. Suspicion arises when one considers the 
form of (7) which shows an 01, dependent on dt through the Courant number c. 
Consider a problem in which a steady state has developed, with 5:” = @. Once 
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this condition is reachedl, both the FDE (2) and computational experience with the 
upwind dBerencing method in multidimensional problems indicate that a change 
in dt does not change the steady-state solution. Yet (7) would indicate that a 
reduction in dt increases a, (through c). If the concept of artificial viscosity 01, 
means anything, it would appear that the FDE solution should depend on ae ; 
but we see that we can change 01, through d t, and not change the steady-state 
solution. 

Alternate to the above analysis of the transient equation, one can instead analyze 
for the CL, effect after assuming that a steady state exists. Setting 5;” = tin in (2) 
and expanding in a Taylor series, we obtain a steady-state ~31, , denoted by (Y,~ , as 

43s = &uAx. 09 

In this formulation, 01,~ # f(At) and the steady-state independence of At is not 
suspect. 

The resolution of the ambiguity between the two different expressions (7) for 01, 
and (8) for 01,~ is readily accomplished by recognizing that, for the inviscid model 
equation, the only possible steady-state solution with u = constant is the trivial 
solution <in = [In = constant. In this case, P[/ax2 = 0, permitting an arbitrary 
form for ~ll~ . The question is, which analysis (if either) is appropriate to problems 
with (a) diffusion terms present, (b) dimensions greater than one, (c) spatially 
varying or nonlinear advection velocities u? 

The question may be easily and unambiguously answered for the addition of 
diffusion terms to (l), with a physical diffusion coefficient 01 

5t = 4-i + WLr * (9) 

Using upwind dBerencing on the advection term and forward-time centered-space 
differencing on the diffusion term gives 

54” = 5i” - 45i” - C-3 + 4SF+l - 25in + 5Ll), (10) 

where d = aAt/Ax2. The steady-state analysis for Eq. (9) gives 

0 = -uL + (a + 4 L, + o(Ax2), (11) 

where 01,~ is again given by the steady-state form (8). The transient analysis is 
altered, because (5) must be replaced by 

L-i = (-4 + 4,)t = u2Lc - 2mL!, + ~2L!m! (12) 

and (6) must be replaced by 

5t = -42 + (a + 4 5,s + OW, At21 + HOD, (13) 
1 We do not wish to confuse the matter by considering iteration convergence criteria at this 

point. 
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where the higher-order derivative terms are 

HOD = W&z, - (a2/2) Lml (14) 

and 01, is again the transient form given by (7). Hirt [3] ignores the HOD in (14) 
and in this way successfully predicts the transient stability behavior, but we are 
interested in the 01, appropriate for a steady-state solution, and we must retain the 
HOD. 

For any steady-state solution, (9) gives 

5 rrPm = (u/4 Lm = 044” La! = (u/4” 5, * (15) 

We now apply these relations (15) for a steady state to the result of the transient 
analysis. Assuming a steady state in (13) using (14) and (15), and substituting (7) 
for a, gives 

0 = - UL + 4z, + wc/2) l&c - ww4 cl!, + hm(u/a) 5,, 

- Llt(a2/2)(2&)2 [,, + O(Llx2, dP), (16) 

0 = -& + (a + 4 Lx + wx2, b2), (17) 

where the steady state 01,~ is given by (8). It is thus clear that although the transient 
o(, of (7) may be appropriate for Hirt’s stability analysis, the steady-state form OL,, 
of (8) is appropriate when a steady-state condition has been reached, even though 
the transient equation is analyzed. 

It may be argued that the last relation of (15) could be used to eliminate CL~& 
from (ll), thus leading to the conclusion that no artificial viscosity coefficient 01,~ 
is present, but rather that an “artificial advection velocity” u,, is present, as in 

where 

0 = -(u - u,,) 5, + &z, + wx3, (18) 

24 es = a&/a) = ~u2Ax/a. (19 

However, the “artificial velocity” term in (18) must still be interpreted as producing 
an artificial viscous effect, even though the a,&, term has been removed. The 
steady-state solution is not determined by 01 and u independently, but only by their 
ratio ujol, along with the boundary conditions. When the proper length normalizing 
of the spatial domain of definition is taken into account, this ratio U/CL is a Reynolds 
number. An artificial viscous effect is then simply any effect which reduces the 
effective Reynolds number u/a!. In (1 l), the artificial viscous effect is expressed as 
an artificial increase in CY, which reduces U/E to ~/(a + 01,~). In (18), the artificial 
viscous effect is expressed as an artificial decrease in u, which reduces U/E to 
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(a - U&X. Thus, both 01~~ in (11) and u,, in (18) act to reduce the effective Reynolds 
number and therefore have an artificial viscous effect. 

There is, in fact, a quantitative ambiguity in these two steady-state anaylses, due 
to the use of (15) in the finite difference solution, whereas (15) is only applicable 
to the continuum solution. Equation (11) has a factor 

24 U 1 
___I_ 

01 + % ( a 1 + &Ax/a 1 ’ (20) 

whereas (18) has a factor 

(u - U&L = (u/ol)(l - +uAx/a). (21) 

But since l/(1 + l ) = 1 - E + O(G), these two equations (20) and (21) for the 
artificial viscous effect are equal, to within a truncation error term of order 4x2, 
provided that 

&Ax/a < 1. (22) 

This is obviously true as Ax --f 0, in which case (15) becomes applicable to the FDE. 
[Equation (22) is the familiar requirement for formal accuracy of the upwind 
difference method, that the computational cell Reynolds number uAx/a be < 2.1 

Similarly, (15) might be used in (11) to express the first-order truncation error as 
a coefficient of I&,, just as legitimately. But since we have no such term in the 
original continuum equation, this exercise does not lend itself to a fruitful inter- 
pretation of the physically analogous behavior of the FDE. 

We also remark that if problems are considered with boundary conditions either 
of the form 

5(O) = a, 

or 

5(O) = a, 

the resulting steady-state solution is 

5,(l) = b (23) 

i(l) = b, (24) 

c(x) = C, + C2exuia (25) 

with C, # 0. This solution gives nonzero values for all spatial derivatives. Unlike 
the situation for the inviscid equation, the distinction between the 01, of (7) and the 
01,~ of (8) is then important. 

For multidimensional problems with nonlinear coefficients, the resolution of the 
transient and steady-state analyses is not so neat. Both analyses give different 
values of 01, or 01,~ in different directions, each of the form (7) or (8). But the 
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transient form 01, in (7) depends on (5), an equation which is not applicable to 
multidimensional and/or nonlinear problems. Further, the multidimensional 
transient analysis predicts that the steady-state solution for the upwind differencing 
method is a function of (At), which disagrees with computational experience. 
Thus, the steady-state analysis does appear to be appropriate for multidimensional 
nonlinear steady-state problems. 

ANALYSES OF OTHER METHODS 

In Table I, we present the results of both the transient and steady-state analyses 
for the artificial viscosity of various methods, based on the inviscid model 
equation (1). (Higher-order terms in the transient expansion have been given by 
Tyler 141.) The steady-state results for the inviscid equation are identical to those 
results obtained from the viscous equation (9), using for the viscous term any of 
the usual methods based on second-order space-centered differences; these include 
FTCS, fully implicit, ADI, Cheng-Allen, Crocco, Saul’yev, Adams-Bashforth 
methods [6], etc. For u = constant, the upwind difference method is equivalent to 
the “donor cell” [5] or “second upwind difference” method [6], which uses cell- 
averaged advection velocities at cell interfaces. It has nonzero artificial viscosity in 
both analyses, for c < 1. The forward-time, centered-space (FTCS) method is, 
of course, unstable in the absence of physical viscous terms, and accordingly has 
a, < 0 in the transient analysis [3]. The Lax method [7] is still frequently used, 
and also has nonzero artificial viscosity in both analyses, for c < 1. 

Leith’s method [8] (see also [2]) is very important. It is based on a 
second-order Taylor series expansion of (1) in time. For the model equation (I), 
L&h’s method is algebraically identical to other methods based on the second-order 
time expansion, such as the Lax-Wendroff method [9], the Richtmyer [lo] and 
other two-step Lax-Wendroff methods, Moretti’s method [ll], and MacCormack’s 
method [12]. Leith’s method also is involved in Fromm’s method of zero average 
phase error [13], and even is related to Rusanov’s method [14] for certain combi- 
nations of parameters. SigniGcantly, 01, = 0 is indicated only in the transient 
analysis.2 From the steady-state analysis, 01,~ = +u2A t is indicated, implying that 
a - 0 only as At -+ 0. There is no danger of misinterpretation of higher-order es - 
terms here, because the method is algebraically equivalent to the FTCS method 
applied to the advection-diffusion equation (9) with the physical cy. = &u24 t. 
Unlike the example of upwind differencing considered earlier, the FDE and 
computational experience now indicate that the steady-state solution will depend 
on At. 

2 Leith [S] was only concerned with the transient problem, of course. The present work is not 
to be construed as a criticism of L.&h’s work. 
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The two-step Matsuno method [15] of differencing the advection terms has also 
been used for compressible flow by Brailovskaya [16], using the same approach 
on the viscous terms, and by Allen and Cheng [ 171, using a special treatment of the 
physical diffusion terms which successfully removes the additional dt restriction 
present in Brailovskaya’s method due to the diffusion term. The Matsuno method 
requires special mention, because of a further ambiguity in the steady-state OL,,$ 
analysis. This two-step method for (1) is written as 

5:” = 5in - w)(~+L,, - &), (264 

The (n + 1) values are provisional or intermediate values. The method may be 
interpreted as a first iterative approximation to the fully implicit method. For the 
purposes of stability analysis and artificial viscosity analysis, (26) may be rewritten 
as a single equation 

5’” = tin - (c/2)G+, - ii”-1) + (c”/4)(5?+“,, - 25,” + G-2). (27) 

The equivalence of (27) to the two-step method (26) holds only for the model 
equation (1) at interior points; the presence of boundaries and nonlinearities 
destroys this equivalence. The last term of (27) is recognized as the usual 3-point 
expression for oIa2[/ax2, but written over a mesh spacing of 2dx rather than dx. 
With this interpretation, the steady-state analysis would indicate 01,~ = 2u2dt. 
However, the higher-order terms enter into the behavior of the equation in an 
unexpected and fortunate manner. Each of the two steps (26a) and (26b) has the 
same operator form, i.e., 

i = = 5” + I@), @a) 

i n+l = 5” + L(pTq. (28b) 

(This is in contrast to the two-step Lax-Wendroff methods, for example.) Allen 
and Cheng [17] noted the significant fact that, when a steady state is reached with 
this method, not only does [“+l = c”, but also {“+1 = 5”. Using this information, 
the steady-state analysis for 01,~ can be applied to each step of (26) separately, 
rather than to (27). The result is aeS = 0, as for the FTCS method. This conclusion 
has been verified in the present study by one-dimensional tests, which exhibit 
a steady-state solution which is not a function of dt, in contrast to the analysis 
of (27) and in contrast to Leith’s method. 
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A TWO-DIMENSIONAL EXPERIMENT 

To test the applicability of the results from the one-dimensional model 
equation (1) to the two-dimensional gas dynamic equations, a numerical experiment 
using Moretti’s inviscid blunt body program [18] was run. A 6” half-angle sphere- 
cone was run at a free-stream Mach number A4 = 10, with an ideal gas and a ratio 
of specific heats y = 1.4. The program utilizes shock patching in a curvilinear 
mesh system which adjusts as the solution develops. Since the shock is correctly 
maintained as a discontinuity in this program, the present results are not confused 
by the postshock oscillations of the “through” or shock-smearing calculation 
methods. An extremely coarse mesh was chosen to exaggerate the LX,, effects; the 
mesh had only three mesh points (two intervals) between the body and the shock, 
and only five mesh points along the body. The object of the experiment was to show 
that the steady-state solution obtained with Moretti’s method is a function of the 
dt used, as indicated by the steady-state analysis for 01, . (This behavior is in 
contrast to that of the upwind difference method considered earlier, and indeed 
to most other finite difference methods.) 

The most sensitive location was found to be the (2, 3) point, in the center of the 
mesh. The d t was changed by the program input parameter STAB; for STAB = 1, 
the dt used was about 0.94 of the linear stability limit for a square mesh. The first 
segment of solution A, shown in Fig. 1, was run out to 3000 time steps with 
STAB = 1, giving a dimensionless time T = 15.82. This represents a rather 
unequivocal steady state, with the normalized density p changing by only 2.5 x 1O-6 
in the last 200 time steps, or less than 2.74 x lo-‘% per time plane. Then the 
second segment of solution A was obtained by changing the critical time-step 

4.7 

(2,3) 

4.6 

FIG. 1. Late time density solutions at point (2,3) using Moretti’s method. 6” sphere-cone, 
it4 = 10, y = 1.4, 3 x 5 mesh. For T < 15.82, dt, = diB ~0.94 dr crit. For T> 15.82, 
At, N l/5 A&z. 
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multiplier STAB to l/5. Nothing else was altered. This computation was continued 
for an additional 28,000 time steps, at which T = 46.45. This gave a new steady- 
state solution, with p changing by only 4.32 x 1O-4 in the last 1000 time planes. 
As a further check, a second solution B was run using the larger dt (STAB = 1) 
all the way out to T > 46.45. 

The difference between the two steady-state solutions at T = 46.45 is shown in 
Fig. 1, and is presented tabularly in Table II. At the most sensitive point (2,3), 
the normalized densities differed by 2.3 %, the normalized pressures by 3 %, and 
the normalized shock stand-off distance by 0.6 “/o. 

TABLE II 

Steady-state solutions at point (2,3) using Moretti’s method. 6” sphere-cone, M = 10, y  = 1.4, 
3 x 5 mesh, p, P, Y, = normalized values of density, pressure, and shock stand-off distance. 

At‘4 N l/5 dt,. 

PC% 3) P(2,3) rs 

Solution A 4.664 76.54 1.142 
Solution B 4.559 74.25 1.149 
Percent difference 2.3 % 3.0% 0.6 % 

That the percentage difference between the two different solutions is small is to be 
expected, since the blunt body problem is known from physical and numerical 
experiments to be quite insensitive to Reynolds number. The FDE solution is then 
only a weak function of aeg and dt, especially since inviscid boundary conditions 
are used on the surface so that no boundary layer develops, and since the shock is 
treated as a discontinuity. The numerical solutions obtained by this and other 
methods, using both implicit and explicit artificial viscosities, are certainly valid 
approximations. The significant point is that the two-dimensional steady-state 
solution obtained did depend on At, supporting the one-dimensional analysis for 
aeg which indicates that the method does exhibit an artificial viscosity effect in the 
steady state. A further indication of a viscosity effect was obtained from two 
solutions in a finer (5 x 7) mesh. The solution with STAB = 1 was steady to all 
four significant figures printed out for that test, whereas a “steady” solution 
obtained with STAB = l/10 exhibited a persistent oscillation of fl in the second 
significant figure of the density. This behavior is again consistent with the indication 
of the steady-state analysis for which aeS oc At. 

INTERPRETATION OF THE LAX-WENDROFF METHODS 

The interpretation of the artificial viscosity for the Lax-Wendroff methods 
involves the resolution of paradoxical statements. On the one hand, we have the 
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facts that (1) the transient analysis indicates (II, = 0 and a formal truncation error 
for the inviscid equation of O(&, AP), and (2) the exact transient solution 
57” = &-“_, is obtained for c = 1 (and in 20 with time splitting, i$’ = <y-“_,,+, 
for c, , c, = 1). On the other hand, we know that the steady-state analysis indicates 
clleS > 0, with the Lax-Wendroff methods for the inuiscid equation being alge- 
braically equivalent to centered-space differencing of the steady viscous equation 
with aeg = u2At/2. 

The paradox is due to the effect of boundary conditions. In order to resolve this 
paradox, we consider the equation 

--AL + Xz, = 0, 

5(O) = 0, l(l) = 1. 

Using centered differences, we have 

(294 

V-9 

-WWG+, - Si-1) + WAx2)G+l - Xi + tli-1). (30) 

The solution to (29) is 

c(x) = (1 - ezA’“)/(l - eAiB). (31) 

This solution to the continuum equation is plotted in Fig. 2a for various parameters 
A and B. The corresponding finite difference solutions for Ax = l/10 are plotted 
in Fig. 2b. In order to interpret (Y,, , we must examine these solutions from the 
viewpoints of both the viscous and the inviscid equations. 

1 

a. CONTlNtlUhl SOLUTIOKS 

II. FINITE DIFFERENCE SDLITICNS 

FIG. 2 Continuum and finite difference solutions to -A<, + B&, = 0, C(O) = 0, c(l) = 1. 
Centered differences, Ax = l/10. 
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We first consider the viscous equation. For A/B = 0, the first derivative 
(advection) drops out; we have the simple straight-line continuum solution 
2;(x) = x, and the exact finite difference solution ci = (i - 1) dx. For A/B > 0, 
the 5 profile is blown downstream. As A/B becomes large, the continuum solution 
becomes c(x) N 0 up to the neighborhood of x = 1, where a rapid increase in f: is 
required in order to meet the second boundary condition of i(l) = 1. For B = 0, 
the continuum solution becomes c(O) = 0 everywhere; the second boundary con- 
dition l(l) = 1 cannot be met, and is extraneous since it would overspecify the 
problem. As this condition B = 0 is approached in the limit, we have the classical 
singular perturbation problem in the small parameter B/A, in which the order of the 
differential equation is reduced as B/A ---f 0. For the finite difference equation, the 
behavior analogous to the singular perturbation problem occurs at A/B = 20 
(more generally, A&/B = 2). At this condition, the FDE solution is & = 0 for 
i < 10, and ill = 1. This FDE solution may be interpreted here as a qualitatively 
correct viscous behavior. But for &lx/B > 2, oscillations and undershoot (I&, < 0) 
develop as described in [6]. In terms of the viscous steady-state equation, this 
dividing condition AAx/B = 2 corresponds to a cell Reynolds number 
R, ES uAx/a = 2. 

We next consider the inviscid equation using a Lax-Wendroff method. The 
condition AAx/B = 2 now corresponds to c = 1. The exact transient solution is 
obtained as c;+’ = <rek, ; for n > 10, this gives the exact steady-state solution of 
ii = cl = 0 for i < 10. For this condition of c = 1, the extraneous boundary 
value & = 1 does not feed forward and influence the solution at interior points. 
The extraneous value & = 1 is an error in this inviscid interpretation, but it is a 
purely local error for c = 1. Thus, there exists no contradiction with the formal 
truncation error of the method which implies an error of O(Ax2) for the steady-state 
problem. (This localness of the outflow error likewise removes the ambiguity for 
the upwind difference method and others which give the exact solution for c = 1.) 
The point is that the FDE solution for AAx/B can be validly interpreted as either a 
qualitatively correct viscous solution with R, = 2, which solution includes Cl1 = 1, 
or as an exactly correct inviscid solution at c = 1, which solution does not include 
the extraneous local boundary error cl1 = 1. 

However: this interpretation is altered by two situations of practical importance; 
nonunity Courant numbers, and the addition of viscous terms to the equations. 

The first situation which alters the usual analysis is the case of nonunity Courant 
number. For c < 1, the Lax-Wendroff methods no longer give the exact solution 
at interior points, but the formal truncation error is still O(Ax2, AP). However, the 
FDE solution with a fixed outflow boundary value can only be interpreted as a 
viscous solution with 01,~ = u2At/2, and with only first order accuracy. The O(Ax) 
error has been introduced by the requirement for the extraneous outflow boundary 
condition, which feeds forward for c < 1 and produces the artificially viscous 
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behavior. Since the usual analysis for formal truncation error does not include 
boundary effects, it is inadequate in the present case of c < 1, and the true first 
order accuracy of the steady-state FDE solution is indicated by the steady-state 
analysis for artificial viscosity. 

We have considered only a fixed outflow boundary condition, presumed to be 
in error. It is possible that this outflow error could actually be ordered (i.e., 4~“) 
using any of several methods [6]. The outflow error for c < 1 will almost certainly 
be O(dx), and the remarks made elsewhere in this paper are based on that assump- 
tion. But in the event that the ouflow error were only 0@x2) then the Lax-Wendroff 
solution for c < 1 would be 0(dx2); however, the solution would still be artificially 
viscous in the sense that there exists a nonzero coefficient of <,, . 

The second situation which alters the usual analysis is the addition of viscous 
terms in the continuum equation. The viscous terms cannot be treated by the 
Lax-Wendroff time differencing, which would be unstable, but several authors 
have used FTCS differencing for the viscous terms, as in 

(32) 

where d = c~At/dx~, as before. (In the two-step Lax-Wendroff methods, the viscous 
term usually has been added in the second step only.) Here, the steady-state solution 
is clearly a viscous one, where the viscous term is the sum of the intended (physical) 
a and the artificial aes . There is no contradiction of the usual truncation error 
analysis here, because the 0(,4x2, dt2) result is not obtained from (32), which is 
readily seen to be only first order accurate. Note also that, with the physical 
viscous term present, large Courant numbers actually aggravate the eyes error. 
From Table I it is easily shown that the aeS of the Lax, Lax-Wendroff and upwind 
differencing methods are in the ratios l/c:1 :c, respectively. For regions near the 
stability limit c = 1, the artificial viscosity of a Lax-Wendroff-FTCS method is 
virtually the same as the upwind difference method; within a boundary layer, 
c < 1, and the Lax-Wendroff-FTCS method will be more accurate, as in Ref. [12]. 

To summarize, the Lax-Wendroff methods do give the exact solution of the 
model equation, in both transient and steady-state cases, for c = 1 and no viscous 
terms present. The boundary error at outflow is purely local. The usual truncation 
error analysis is applicable, and indicates errors of only 0(dx2, nt2) with no 
artificial viscosity effect. The steady-state analysis showing aGs > 0 is inappropriate. 
But for c < 1 in the inviscid equation, any outflow boundary error does have 
global effects which invalidate the usual truncation error analysis of the interior 
point equations and which introduce an artificially viscous behavior. Also, for 
the addition of viscous terms, the usual truncation error analysis is not applicable, 
and the method has an artificial viscosity effect which is aggravated by near-unity 
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Courant numbers. In both these cases of c < 1 and/or additional viscous terms, 
the steady-state analysis for artificial viscosity is appropriate, and shows 
%s = u2d t/2 and first-order formal accuracy. 

IMPLICATIONS TO OTHER METHODS 

Although we have not tested the following methods experimentally, the impli- 
cations of the analyses on the model equation (1) are as follows (see Ref. [6] for 
references and details). The midpoint leapfrog, the Crocco, Adams-Bashforth, 
Heun, fully implicit, Crank-Nicholson, and the various AD1 methods would have 
zero artificial viscosity in the steady state, except when upwind differencing is 
used for the advection terms as has been done in some AD1 solutions. The multistep 
Strang, Abarbanel and Zwas, Fromm [13], and the Crowley methods would have a 
persistent nonzero aeS in the steady state. The only known methods for which the 
analyses indicate zero artificial viscosity in both the transient and steady-state 
analyses are the midpoint leapfrog method, the Arakawa method, the angled 
derivative method of Roberts and Weiss [ 191, and those AD1 methods which have a 
truncation error of 0@x2, dt2). Each of these has other disadvantages, of course. 

It is interesting to note that the expression for aeg of the Leith method, 
aeS = $u2,4t, does not contain dx directly. Thus, as dx + 0, the 01,~ + 0 only 
because of the Courant number restriction on stability, which requires dt + 0 as 
dx -+ 0. If a method were devised which used the second-order time expansion 
of the Leith (Lax-Wendroff, etc.) method but which was unconditionally stable, 
the aeS effect would persist even as dx + 0, for fixed dt. 

FINAL REMARKS 

We have four final remarks on the interpretation of artificial viscosity: 

(1) The truncation error analysis indicates the order of the error, which is 
strictly applicable only as dx, d t - 0. In a practical computation, we are generally 
interested not in the order of the truncation error, but in the size of the truncation 
error, for some dx and dt [6]. Thus, the addition of some miniscule viscous term 
(say Re = lo6 for Ax = l/10) formally deteriorates the truncation error of a 
Lax-Wendroff-FTCS calculation to O(dx), but the size of the error remains 
entirely negligible for c = 1. Note also that the size of the truncation error varies 
smoothly for c < 1, although the order jumps discontinuously (singularly) from 
the exact solution at c = 1 to O(dx) for c < 1. 

(2) For multidimensional problems, the most important effect of viscosity, 
in the sense of producing a difference between viscous and inviscid solutions, is 
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usually not so much in the appearance of viscous terms at interior points, but in 
the enforcement of no-slip boundary conditions. Thus, Kentzner [20] has indicated 
that fairly accurate approximations to inviscid solutions can be obtained with 
Re as low as 300 in a reasonable mesh, provided that the inviscid (slip) boundary 
conditions are used. This means that inviscid solutions can be accurate even 
though artificial viscosity is present; however, the error may be somewhat more 
significant for viscous problems. (In assessing the (yes error of FDE solutions for 
drag coefficient CD , for example, it is important to look not for some small error 
in CD, but for a shift in Re to get the same CD . This is obviously appropriate 
because of the usual weak sensitivity of flows to Re.) 

(3) In multidimensional problems, the (II,, terms depend on u and o, which are 
defined with respect to the Eulerian mesh. This means that different spatially varying 
(Y,, apply in the x and y directions, and tend to zero near stationary no-slip walls. 
Thus, “equivalent Re” interpretations are not possible even for viscous solutions, 
except in a qualitative sense, and viscous FDE solutions with nonzero OI,, are often 
more accurate than might be expected from evaluating 01,~ based on freestream 
conditions. However, such solutions are not Galilean invariant [5]. Also, solutions 
for rotating bodies might exhibit anamolous behavior due to different aeS on the 
advancing and the retreating sides. 

(4) Several methods are available [6] for freeing the outflow computational 
boundary condition in multidimensional flows. These will tend to reduce the 
upstream error associated with c < 1 in the inviscid equations. 

SUMMARY 

It has been demonstrated that the usual method of analysis for the artificial 
viscosity of finite difference analogs for the advection terms is ambiguous, with 
different results being obtained for the transient and the steady-state analyses. 
The analysis indicates that many methods which have been touted as having no 
artificial viscosity, notably the Leith, Lax-Wendroff, two-step Lax-Wendroff, 
Moretti, and MacCormack methods, do have a At-dependent artificial viscosity 
effect when a steady-state solution is obtained for viscous flow and/or for c < 1. 
Viscous steady-state solutions obtained using these methods with Courant-numbers 
c N 1 have only first order formal accuracy. 
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